SKELETAL TRANSFORMATIONS OF CIS-BICYCLO[4.2.0]OCT-2-YL SYSTEM

Kiyoharu HAYANO, Yasufumi OHFUNE, Haruhisa SHIRAHAMA, and Takeshi MATSUMOTO

Department of Chemistry, Faculty of Science,

Hokkaido University, Sapporo 060

On treatment with HCO_2H at 0 °C, isomeric 2,4,4,6-tetramethyl-<u>cis</u>-bicyclo-[4.2.0]octan-2-ols gave rise to 1,2,7,7-tetramethyl-<u>cis</u>-bicyclo[3.3.0]oct-2-ene and 1,5,7,7-tetramethyl-<u>cis</u>,cis-1,4-cyclooctadiene, through new modes of skeletal transformation, together with a bicyclo[3.2.1]octane derivative. Mechanisms and biosynthetic significance of the new transformations are discussed.

The sesquiterpene hirsutene $^{1)}$ is believed to be biosynthesized from proto-illudyl cation A through a triple 1,2 shift (Scheme I). $^{2)}$ However, in <u>vitro</u>, such a triple rearrangement has not yet been known. Attempted rearrangements of both isomers of $\mathbb{B}^{3)}$ resulted in the formation of bicyclo[3.2.1]octane derivatives \mathbb{C} as isolable products (Scheme I). We wish to report here a biogenetic like triple rearragement of <u>cis</u>-bicyclo[4.2.0]oct-2-yl cation \mathbb{D} to \mathbb{G} , together with related skeletal transformations of the same cation.

Scheme I

Four bicyclic compounds 2a, $^{4)}$ 2b, $^{4)}$ 2c, $^{4)}$ and 2d, $^{4)}$ equivalent to D were synthesized from the known ketone 1.5 The Grignard reaction (CH $_3$ MgI, 0 °C, 2 h) of 1 produced streoselectively 2a [mp 52-54 °C, δ (CCl $_4$) 0.92, 0.98, 1.12, 1.20 (each 3H, s)] in 96% yield. Treatment of 1 with Ph $_3$ P=CH $_2$ in dry PhH (rt, 2 h) afforded 2b (78%). Epoxidation of 2b with m-CPBA in CH $_2$ Cl $_2$ at rt (1.5 h), and subsequent reduction with LAH in THF (60 °C, 1 h) produced 2c (80% from 2b). Isomerization of 2b with 0.1 eq I $_2$ in refluxing toluene (4.5 h) gave 2d in a quantitative yield. Stereostructure of 2a was determined by lanthanide induced shift studies of its nmr

spectrum. 6)

Treatment of each of compounds 2a, 2b, and 2c in HCO_2H at 0 °C (2 h) gave a mixture of 3, 4, 4, 5(=G), 4) 6, 4) 7, 4 and 2d (Scheme II). On the other hand, at 60 °C (0.5 h), similar formolysis of 2a, 2b, 2c, and 2d afforded only the formates 3, 4, and the hydrocarbon 5(=G) (for yields, product ratios and reaction conditions, see Table I). Although exo-olefinic hydrocarbon 7 remained unchanged at 60 °C under the above conditions, endo-olefinic hydrocarbon 6 afforded the formates 3, 4, and the hydrocarbon 5(=G) (see Table I).

Table I

S.M ^{a)}	Condi- tions	y ^{b)}	Products, product ratios ^{c)}						Condi- tions		Products, product ratios			
]		3	4	2d	5(=0	£) 6.	Z			3.	4	5(=G)	
28 2b 2c	0 °C	85%	4.4	4.4	3	1	0.25	0.15	60 °C	88%	1.8	1.8	1	
2b	2 h	81%	1.6	1.6	2.1	1	0.6	0.4	0.5 h	87%	1.4	1.4	1	1
2c		91%	1.8	1.8	1.9	1	0.52	0.38		89%	1.1	1.1	1	
2d		0%	No reaction						66%	1.1	1.1	1	1	
٤									80%	2	2	1		
Z										0%	No reaction			

a) Starting material b) Total yield of the products c) The product ratios were obtained by nmr or vpc

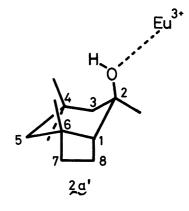
The products listed in Table I were separated by chromatography on silica gel. Their structures were determined as follows.

1β,3,3,5β-Tetramethy1-8β-formyloxybicyclo[3.2.1]octane (3): δ (CC1₄) 0.98, 1.13 (each 6H, s), 4.53 (1H, broad s), 8.08 (1H, s), ν (neat) 1737cm⁻¹, m/e 210 (M⁺). Treatment of 3 with K_2 CO₃ in aq MeOH (25 °C, 3 h) afforded g^{4} (67%) [δ (CC1₄) 0.90 (12H, s), 1.08 (4H, s), 2.97 (1H, s)]. Jones oxidation of g^{4} gave ketone g^{4} [ν (neat) 1753cm⁻¹] (82%). Reduction of g^{4} with NaBH₄ in EtOH (25 °C, 0.5 h) regenerated g^{4} (86%). Therefore the β-configuration of the formyloxyl group of g^{4} was indicated.

1 β ,3,3,5 β -Tetramethy1-8 α -formy1oxybicyclo[3.3.0]octane (4): δ (CC1_{λ}) 1.03(3H,

s), 1.07 (6H, s), 1.10 (3H, s), 4.65 (1H, broad t, J=7 Hz), 7.89 (1H, s), ν (neat) 1737cm^{-1} , m/e 210 (M[†]). Hydrolysis of 4 (K₂CO₃ aq MeOH, 25 °C, 3 h) gave alcohol $10^{4,8}$ (67%) [δ (CCl₄) 1.00, 1.04 (each 3H, s), 1.08 (6H, s), 3.51 (1H, q, J=7, 9 Hz)]. The nmr spectrum in the presence of Eu(fod)₃ [Eu(fod)₃/10=0.51, CCl₄] showed signals at δ 1.69 (3H, s, 5 β -Me), 1.76 (6H, s, 3 α , β -Me), 2.30 (1H, dd, J=14, 1 Hz, 4 β -H), 2.52 (1H, d, J=14 Hz, 4 α -H), 2.80 (3H, s, 1 β -Me), 3.36 (1H, dd, J=14, 1 Hz, 2 β -H), 4.37 (1H, d-quint, J_{7 α -7 β}=14 Hz, J_{7 β -6 β}=7 Hz, J_{7 β -8 β}=7 Hz, J_{7 β -6 α}=2 Hz, 7 β -H), 4.80 (1H, m, 7 α -H), 4.82 (1H, d, J=14 Hz, 2 α -H), 8.05 (1H, q, J=7, 9 Hz, 8 β -H). These data are accounted for by a time averaged conformation 10'. A 1 β , 5 α (trans) structure will not show the observed W letter coupling between 2 β -H and 4 β -H. Jones oxidation of 10 afforded 11⁴) (96%) [δ (CCl₄) 0.85, 0.93 (each 3H, s), 1.08 (6H, s), 1.38 (1H, d, J=13 Hz), 2.02 (1H, d, J=13 Hz), ν (neat) 1745cm⁻¹]. Reduction of 11 (NaBH₄, EtOH, 0.5 h) regenerated selectively 10 (98%).

1,2,7,7-Tetramethy1-<u>cis</u>-bicyclo[3.3.0]oct-2-ene (5=6): δ (CC1₄) 0.98, 1.01 (each 3H, s), 1.61 (3H, broad s), 4.92 (1H, broad s), ν (neat) 800cm^{-1} , m/e 164 (M⁺); The structure of 5 was cofirmed by lanthanide induced shift studies of the nmr spectrum of the major C·6 isomer 12 of cyclopentanones [v (neat) 1745cm⁻¹], obtained from 5 by successive hydroboration-oxidation (aq NaOH, H2O2), Jones oxidation (62% from \mathfrak{Z}) and equilibration (MeOH, MeONa). The spectrum in the presence of Eu $^{5+}$ $[Eu(fod)_3/12=0.22, CCl_4]$ of 12 exhibited peaks at δ 1.72 (3H, s, 3-Me), 1.76 (3H, s, 3-Me), 2.66 (3H, s, 5 β -Me), 4.21 (S⁹⁾=15.8, 3H, d, J_{12-6 β} or 6α =7 Hz, 6α or 6β -Me), 6.91 (S=18.6, q, $J_{6\beta}$ or $6\alpha-12^{=7}$ Hz, 6β or $6\alpha-H$), 7.34 (S=28.9, 1H, d, $J_{8\alpha-8\beta}=18.5$ Hz, $J_{8\alpha-1\beta}=0$ Hz, $8\alpha-H$), 7.76 (S=30.8, 1H, q, $J_{8\alpha-8\beta}=18.5$ Hz, $J_{8\beta-1\beta}=8$ Hz, $8\beta-H$). These spectral data indicates a 1 β , 5 β (cis) structure for 12 (see approximate conformation 12'). The 1 α , 5 β isomer of 12 is expected to show large $J_{8\alpha-1\alpha}$ and $J_{8\beta-1\alpha}$. 1,5,7,7-Tetramethy1- \underline{cis} , \underline{cis} -1,4- $\underline{cyclooctadiene}$ (6): δ (CC1_A) 0.98 (6H, s), 1.69 (6H, broad s), 2.07 (4H, s), 2.67 (2H, broad t, J=6 Hz), 5.37 (2H, broad t, J= 6 Hz), m/e 164 (M^{\dagger}) . The nmr spectrum indicated a symmetrical flexible structure. Therefore the <u>cis</u>-<u>cis</u> structure was assigned. 10)


3,3,5-Trimethy1- \underline{cis} -5-cycloocten-1-ylidene ($\underline{7}$): δ (CC1₄) 0.98 (6H, s), 1.72 (3H, s), 1.89 (2H, s), 1.92 (2H, s), 4.64 (2H, m), 5.37 (1H, broad t, J=6 Hz), m/e

164 (M^{+}) . Stereochemistry of the double bond in χ also was deduced to be <u>cis</u> on the basis of the above nmr data, which show conformational mobility of the ring.

As can be seen in Table I, the hirsutene like hydrocarbon $\mathfrak{Z}(=\mathbb{G})$ is formed not only through the triple rearrangement $(\mathbb{D} \to \mathbb{E} \to \mathbb{F} \to \mathbb{G}$, Scheme I), but also through a series of skeletal transformations involving cyclooctenyl cation \mathbb{H} as an intermediate $(\mathbb{D} \to \mathbb{H} \to \mathbb{E} \to \mathbb{F} \to \mathbb{G}$, Scheme II). It should be noted that \mathfrak{A} and \mathfrak{A} survive the solvolytic conditions even at 60 °C and recovered unchanged. Therefore the hydrocarbon $\mathfrak{Z}(=\mathbb{G})$ is formed through the cations \mathbb{E} and \mathbb{H} , but not via \mathfrak{A} and \mathfrak{A} . Another noteworthy point is the different behavior of the cationic species from \mathbb{B} and the dimethyl analog \mathbb{D} . In the latter case, probably because of the steric crowdedness of the transition state leading to \mathfrak{Z} , the reaction was diverted to give other observed products.

References and Footnotes

- 1) S. Nozoe, J. Furukawa, U. Sankawa, and S. Shibata, Tetrahedron Lett., 1976, 195.
- 2) M. Tanabe, K. T. Suzuki, and W. C. Jankowski, Tetrahedron Lett., 1974, 2271.
- 3) Y. Yamada, Dissertation, Tohoku Univ., 1966. See also A. C. Cope, R. W. Gleason, S. Moon, and C. H. Park, J. Org. Chem., 32, 942 (1967).
- 4) Satisfactory analytical and spectral data were obtained for this compound.
- 5) D. C. Owsley and J. J. Bloomfield, J. Chem. Soc. (C), 1971, 3445.
- 6) The spectrum [Eu(fod) $_3/2a=0.6$, CC1 $_4$] of 2a exhibited peaks at δ 2.90 (S $_9$)=3.80, 3H, s, 4α -Me), 3.56 [2H, dd, (J $_{7\alpha-8\alpha}$ +J $_{7\beta-8\alpha}$)/2=10 Hz, (J $_{7\alpha-8\beta}$ +J $_{7\beta-8\beta}$)/2=5 Hz, 7α , β -H], 3.79 (S=4.47, 3H, s, 4β -Me), 4.40 (1H, d, J $_{5\alpha-5\beta}$ =13.5 Hz, 5-H), 4.76 (1H, m, 8-H), 4.91 (1H, d, J $_{5\alpha-5\beta}$ =13.5 Hz, 5-H), 5.38 (1H, m, 8-H), 5.82 (1H, d, J $_{3\alpha-3\beta}$ =14 Hz, 3 α -H), 5.84 (S=7.79, 3H, s, 6 β -Me), 8.53 (S=14.08, 3H, s, 2 α -Me), 9.6 (S=15.37, 1H, d, J $_{3\alpha-3\beta}$ =14 Hz, 3 β -H), 11.3 (S=17.54, 1H, t, J $_{1\beta-8\alpha}$ =10 Hz, J $_{1\beta-8\beta}$ =10 Hz, 1 β -H). These data are interpreted by a time averaged conformation 2a' with a quasi-chair, flattened six-membered ring.

- 7) C. S. Foote and R. B. Woodward, Tetrahedron, 20, 687 (1964).
- 8) Treatment of 10 with HCO_2H at 60 °C afforded the formate 4, giving no rearrangement products.
- 9) A. F. Cockerill and D. M. Rackham, Tetrahedron Lett., 1970, 5164.
- 10) trans-Cyclooctenes are rigid and their olefinic protons generally couple to the vicinal methylene protons with J=11 and 5 Hz [for examples see E. Vedejs, K. A. J. Snoble and P. L. Fuchs, J. Org. Chem., 38, 1178 (1973); A. J. Bridges and G. H. Whitham, J. Chem. Soc., Perkin Trans.I, 1975, 2264].

(Received September 7, 1978)